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Abstract

The e}ect of three!dimensional hydrodynamics on the enhancement of steady\ laminar heat transfer in corrugated
channels is studied using a combination of analytical and numerical techniques[ Reynolds numbers are considered in
the range of 9 ³ Re ³ 149 to avoid unsteady ~ow[ Two!dimensional sinusoidal corrugations with ~ow perpendicular to
the corrugations is taken as the base[ The heat transfer is higher than for ~at plates due to the presence of recirculation
zones ^ there is increased advection near each stagnation point which\ when combined with the asymmetry of the ~ow
in the downstream direction\ leads to a larger area!averaged heat transfer coe.cient[ In the three!dimensional case the
corrugations are sinusoidal in two orthogonal directions[ A small mean ~ow in the transverse direction leads to an
increase in the heat transfer by allowing particles to cross between the recirculation zones and the main ~ow[ As the
transverse ~ow becomes stronger\ the recirculation is destroyed and there is a corresponding decrease in heat transfer[
Þ 0887 Elsevier Science Ltd[ All rights reserved[

Nomenclature

A corrugated surface area of wall
c speci_c heat of ~uid
d
 average separation between plates
` determinant of covariant metric tensor
`ij contravariant metric tensor
h heat transfer coe.cient
k thermal conductivity
n normal to wall
Nu local Nusselt number
ðNuŁ area!averaged Nusselt number
ðNu9Ł area!averaged Nusselt number for zero Peclet
number
p pressure
Pe Peclet number\ Pe � Ud
rc:k
Re Reynolds number\ Re � Ud
:n
s"x\ z# shape of channel walls
t time
T temperature

� Corresponding author[

T�H\ T�C temperature of hot and cold walls\ respectively
u\ v\ w cartesian velocity components
ui covariant velocity component
x\ y\ z cartesian coordinates
X ~uid particle position
U mean ~ow velocity in channel
V velocity vector
Vw magnitude of near!wall velocity[

Greek symbols
a angle of ~ow to x!axis
bi amplitudes of corrugations in i!direction "i � x\ z#
li wavelengths of corrugations in i!direction "i � x\ z#
n kinematic viscosity of ~uid
r density of ~uid
x\ h\ z boundary!_tted coordinates[

Subscripts
9\ 0\ [ [ [ order of perturbation solution
\i partial di}erentiation with respect to i!direction
"i � x\ y\ z#
sym arti_cial\ symmetric velocity _eld[
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Superscripts
� dimensional quantity
½ rescaled nondimensional quantity[

0[ Introduction

Plate heat exchangers are common in the process
industry[ Heat transfer in these devices can be increased
by introducing some form of mixing into the ~ow which
reduces nonuniformities in the temperature of the ~uid\
thereby steepening the temperature gradient near the
boundaries and increasing the heat transfer between the
~uid and the channel walls[ Because turbulent ~ows typi!
cally exhibit good mixing\ it is usual to operate heat
exchangers at high ~ow rates and within the turbulent
regime\ or to put grooves at the walls or inserts in the
~ow which promote turbulent ~ow[ However\ compared
to laminar ~ow turbulence requires a signi_cant increase
in the energy needed to drive the system\ especially for
very viscous ~uids or for small compact heat exchangers[
In such systems\ it is advantageous to use geometries
which have good laminar mixing characteristics[

Laminar mixing can be induced by di}erent non!
planar wall geometries in which the ~ow separates at a
wall ð0\ 1Ł[ This has been used to enhance heat transfer
in two!dimensional ~ows[ Various wall geometries have
been tried ] sawtooth ð2Ł and stepped ð3Ł geometries have
been proposed ^ sinusoidal shapes\ either sinuous ð4Ð8Ł or
varicose ð0\ 09Ł\ have also been studied[ Smooth shapes
are easier to handle with analytical or numerical tech!
niques[ Enhancement of both heat and mass transfer
as compared to planar walls has been experimentally
veri_ed[

It is possible to enhance heat transfer further by mov!
ing away from two!dimensional\ steady ~ow[ It is known
that the bounding streamlines of recirculation zones can
be broken up by periodic\ small perturbations resulting
in increased heat transfer[ In the language of dynamical
systems theory\ a homoclinic or heteroclinic orbit breaks
up due to the entanglement of stable and unstable mani!
folds and produces a stochastic layer[ Chaotic particle
paths may appear in two!dimensional\ non!autonomous
or three!dimensional\ autonomous systems[ In the case
of ~uid motion\ the velocity vector provides the vector
_eld for particle paths[ Ghosh et al[ ð00Ł applied a time!
periodic oscillation to a journal!bearing ~ow to show
this e}ect[ Acharya et al[ ð01Ł achieved similar results in
helical pipes by spatial periodicity in the downstream
direction[ In these examples\ chaotic particle paths have
been shown to increase mixing and hence the heat transfer
rate ð02Ł[ It may thus be possible to apply this idea to
plate heat exchangers and increase heat transfer by
changing from steady\ two!dimensional to steady\ three!
dimensional ~ow[ There are many di}erent channel
geometries which can give rise to three!dimensionality in

the ~ow[ The simplest is two!dimensional corrugations
in which the ~ow comes at an angle to the corrugations[
Or we can have three!dimensional corrugations in one of
several di}erent patterns[ Most of the work done on
three!dimensional ~ow in channels has been on turbulent
~ows with herringbone patterns ð03Ð05Ł[ Laminar ~ow
in this geometry has been experimentally studied by
Focke et al[ ð06Ł[ Focke and Knibbe ð07Ł have shown by
~ow visualization that very complicated pathlines exist\
indicating good mixing and the possibility of improved
heat transfer[

We are interested in understanding the mechanism and
extent of heat transfer enhancement by three!dimen!
sionality in steady\ laminar channel ~ows[ The base ~ow
to which heat transfer will be compared is a channel
with two!dimensional\ sinusoidal\ varicose corrugations\
schematically shown in Fig[ 0"a#\ in which the ~ow is
perpendicular to the corrugations[ Then we add cor!
rugations in the normal direction to produce the three!
dimensional geometry shown in Fig[ 0"b# "which we will
refer to hereafter as the {eggcarton| con_guration#[ These
two channel geometries will enable us to carry out per!

Fig[ 0[ Channels with "a# two!dimensional and "b# eggcarton
corrugations[
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turbation analyses\ for suitable small parameters\ of the
two! and three!dimensional hydrodynamics[ Numerical
integration of the velocity _elds gives us pathlines which
will provide a qualitative picture of the mixing[ In
addition\ _nite!volume numerical solutions will be used
to extend the range of the hydrodynamical results outside
the validity of the perturbation solution\ as well as to
determine the temperature _eld and heat transfer rates[
To avoid unsteady ~ow we will con_ne all our results to
a maximum Reynolds number of 149[

1[ Problem de_nition

We consider the steady\ laminar ~ow between cor!
rugated plates of an incompressible Newtonian ~uid with
constant properties[ The coordinate system "x\ y\ z# is
shown in Fig[ 0[ The ~ow is produced by an imposed
pressure gradient in the xÐz plane at an angle a with
respect to the x!axis[ The walls are kept at di}erent tem!
peratures so that the heat transfer is primarily from one
to the other[ Given a _xed geometry\ the pressure drop
and volume ~ow rate in the channel are related\ so that
one determines the other[ Here we will prescribe the ~ow
rate through speci_cation of the Reynolds number ^ the
velocity and pressure _elds will be unknown[

The governing equations are nondimensionalized
using the average separation between the channel walls
as the characteristic length d
\ the mean inlet velocity as
the characteristic speed U\ and rU1 as the characteristic
pressure\ where r is the density[ The nondimensional
mean ~ow velocity is thus unity with components cos a

and sin a in the x! and z!directions\ respectively[ The
temperature is nondimensionalized as

T �
T�−T�C
T�H−T�C

"0#

where T�H and T�C are the temperatures of the upper and
lower walls\ respectively[ All variables from now on are
nondimensional[

The mass\ momentum and energy balance equations
are

9 = V� 9 "1#

"V =9#V �
0
Re

91V−9p "2#

"V =9#T �
0
Pe

91T "3#

where viscous dissipation has been neglected[
V �"u\ v\ w# and p are the velocity and pressure\ respec!
tively[ The Reynolds and Peclet numbers are given by
Re � Ud
:n and Pe � Ud
rc:k\ respectively[ The Peclet
number is a measure of the importance of advective to
conductive heat transfer[

The walls of the channel are at y � 2s\ where

s"x\ z# �
0
1

¦bx cos 0
1px
lx 1¦bz cos 0

1pz
lz 1 "4#

where bx and lx are the dimensionless amplitude and
wavelength of the corrugations in the x!direction\ and bz

and lz are those in the z!direction[ bz � 9 is a special case
of two!dimensional corrugations ^ the ~ow\ however\ is
two!dimensional only if a � 9 also[

For simplicity\ we will limit ourselves to fully!
developed velocity and temperature _elds that are far
from the localized e}ects of inlet and outlet sections[ This
requires periodicity in the ~ow variables over lx and lz

in the x! and z!directions\ respectively[ Thus\ only one
wavelength in these two directions need be considered[
The boundary conditions are the following ]

, Velocity ] V is zero at the upper and lower walls due to
no!slip\ and is periodic in the x! and z!directions

, Temperature ] T � 9 at y � −s\ and T � 0 at y � s ^ T
is also periodic in the x! and z!directions[

, Pressure ] The pressure gradient is periodic in the x!
and z!directions[ The condition for pressure in the y!
direction is somewhat more complicated[ For the per!
turbation solution 1p:1y does not appear in the leading
or _rst order equations\ so a boundary condition is not
necessary[ In the numerical solution\ a condition for
pressure at the walls is obtained from the momentum
equation[

Heat transfer in the channel will be quanti_ed in terms
of the Nusselt number at a wall de_ned as

Nu 0
hd
k

� b
1T
1n b "5#

where h is the heat transfer coe.cient\ k is the thermal
conductivity of the ~uid\ and 1T:1n is the temperature
gradient normal to a wall[ The global heat transfer is
represented by the area!averaged Nusselt number

ðNuŁ �
0
A g gA

1T
1n by�s

dz dx "6#

where A is the surface area of either of the corrugated
channel walls[ In order to assess the e}ect of advection\
we will often determine the heat transfer rate as a function
of Peclet number[ Since Pe � 9 corresponds to pure con!
duction\ the Nusselt number presented will\ in these cases\
be normalized with respect to its value at Pe � 9\ written
as ðNu9Ł[

2[ Perturbation solution

Pathlines X"X9\ t# can be obtained from the velocity
_eld as solutions of the dynamical system

dX

dt
� V "7#
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where X � X9 at time t � 9[ From a Lagrangian point of
view\ analysis of particle paths is a key step to under!
standing mixing[ These can be generated much more
accurately from continuous\ analytical velocity _elds
than from numerical solutions at discrete points\
especially in the presence of chaotic advection where there
is extreme sensitivity to an initial position X9[

To obtain a perturbation solution of the two!dimen!
sional hydrodynamics we will assume that the wavelength
is much longer than the average separation distance
between the walls\ i[e[ lx Ł 0\ to enable an expansion in
terms of the small parameter l−0

x [ For the three!dimen!
sional problem\ we will also assume that lx ð lz\ i[e[ the
wavelength of corrugations in the z!direction is much
larger than that in the x!direction\ and that a is small[
These assumptions will decouple the solution of the w
velocity from u and v at lower orders of l−0

x [
The relative magnitudes of the terms in the governing

equations can be written in terms of l−0
x [ Since variations

in the x!direction are smaller than those in the y!direction\
x can be rescaled as x � lxx½ [ The secondary ~ow is also
small\ so that we can rescale the v velocity component as
v � l−0

x v½[ For the three!dimensional problem the z!coor!
dinate can be rede_ned as z � l1

xz½[ The pressure is res!
caled as p � lx p½ in order to obtain nonzero leading order
velocities[ The ~ow angle is changed to a � l−0

x a½[ The
rescaled variables x½ \ v½\ z½\ p½ and a½ are now of unit order[

In terms of the rescaled variables the governing di}er!
ential equations "1# and "2# become

1u
1x½

¦
1v½
1y

¦l−0
x

1w
1z½

� 9 "8#

l−0
x u

1u
1x½

¦l−0
x v½

1u
1y

¦l−1
x w

1u
1z½

�
0
Re $l−1

x

11u

1x½1
¦

11u

1y1
¦l−3

x

11u

1z½1%−
1p½
1x½

"09#

l−2
x u

1v½
1x½

−l−2
x v½

1v½
1y

¦l−3
x w

1v½
1z½

�
0
Re $l−3

x

11v½

1x½1
¦l−1

x

11v½

1y1
¦l−5

x

11v½

1z½1%−
1p½

1y
[ "00#

l−0
x u

1w
1x½

¦l−0
x v½

1w
1y

¦l−1
x w

1w
1z½

�
0
Re $l−1

x

11w

1x½1
¦

11w

1y1
¦l−3

x

11w

1z½1 %−l−0
x

1p½
1z½

[ "01#

A perturbation solution is obtained by expanding the
unknowns in the form

f � f9¦l−0
x f0¦l−1

x f1¦= = = "02#

where f is u\ v½\ w\ and p½[

The mean velocities in the x! and z!directions can be
expanded as

cos l−0
x a½ � 0−l−1

x

a½1

1;
¦= = = "03#

sin l−0
x a½ � l−0

x a½−l−2
x

a½2

2;
¦= = = "04#

respectively[
The O"0# problem gives the velocity _eld

u9 �
Re
1

1p½9

1x½
"y1−s1# "05#

v½9 � −
Re
1 $

11p½9

1x½1 0
y2

2
−s1y¦

1
2

s21−1ssx½

1p½9

1x½
"y−s#%

"06#

w9 � 9 "07#

where the subscript on s denotes di}erentiation[ When
this solution is required to satisfy v½9 � 9 at y � −s\ we
obtain an equation that can be integrated to give

1p½9

1x½
� −

2

1Re s2
[ "08#

The constant of integration is chosen to satisfy equation
"03# to leading order[

The same procedure applied to O"l−0
x # terms gives the

_rst!order velocity components

u0 � −
Re

0019s6
ð10sx½y

5−094sx½y
3s1¦88sx½ s

3y1

¦739s3y1−04sx½ s
5−739s5Ł "19#

v½0 �
Re

0019s7
2yðssx½x½ y

5−6sx½y
3s2¦24s1

x½ y
3s1¦00sx½x½ s

4y1

−22s1
x½ s

3y1−179sx½ s
3y1−4sx½x½ s

6

¦4s1
x½ s

5¦179sx½ s
5−6s1

x½ y
5Ł "10#

w0 � −
2a½

3s2
"y1−s1# "11#

with the pressure gradients

1p½0

1x½
� −

2

69s2
ð−24sx½x½ s−06s2

x½ ¦063s1
x½ ¦5sx½ ssx½x½ Ł "12#

1p½9

1z½
� −

2a½

1Re s2
[ "13#

Two terms of the perturbation expansion are su.cient
to capture the qualitative nature of the ~ow _eld includ!
ing the phenomena of separation and recirculation[ Con!
vergence of the expansion depends on the values of Re
and the corrugation geometry ^ for the solutions shown
here the second term of the expansion is numerically
much smaller than the _rst[ The perturbation solutions
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are also validated by comparison to the analytical results
of Chow and Soda ð0Ł who used a di}erent perturbation
procedure[ Details are in ð08Ł where the velocity pro_les
at di}erent sections are shown[

3[ Numerical solution

The perturbation solution gives the hydrodynamics of
the ~ow for large wavelength to separation ratio[ In order
to solve the energy equation as well as to obtain the
hydrodynamics outside the range of validity of the per!
turbation solution\ a _nite!volume formulation is used[
The governing equations are expressed in terms of a
nonorthogonal coordinate system

x � x "14#

h �
y¦s
1s

"15#

z � z "16#

in which h � 9 and h � 0 correspond to the channel walls[
Following Eringen ð19Ł we can rewrite equations "1#Ð

"3# in generalized curvilinear coordinates as

"`0:1ui#\i � 9 "17#

0`0:1uiuj−
`0:1

Re
`mjui

\m−
`0:1

Re
`mj 6

i

ml7 ul1\ j

� −`0:1`kip\k−`0:1 6
i

jl7 uiu j "18#

0`0:1u jT−
`0:1

Pe
`mjT\m1\ j

� 9 "29#

where ui are the contravariant components of the velocity
vector\ `mj is the contravariant metric tensor\ ` is the
determinant of the covariant metric tensor\ and " # is the
Christo}el symbol of the second kind[ The subscript \i
denotes partical di}erentiation with respect to the ith
direction[

These equations are discretized using the power!law
scheme of Patankar ð10Ł[ The resulting equations are
solved using the modi_ed PISO!SIMPLER algorithm of
Sharatchandra and Rhode ð11Ł[ The key features of this
algorithm are ] "a# an explicit equation for pressure is
obtained from the continuity equation\ similar to the
SIMPLE!based schemes\ and "b# the problem of pressure
checkerboarding endemic to non!staggered grids is
avoided by application of the momentum equation to
obtain a particular interpolation scheme[

The numerical code was validated by comparison to
standard results for entrance ~ow in ~at!plate channels
and in a square duct\ and to the corrugated channel
results of Sobey ð1Ł[ Convergence with respect to mesh
size was also con_rmed[ A mesh of 20×20 was chosen

for the two! and 20×20×20 for the three!dimensional
calculations[

Before proceeding to a discussion of results\ it is appro!
priate to summarize and compare the regions of validity
of the analytical and numerical solution procedures[ Fig!
ure 1 shows a comparison of the size of the unmixed
region of the ~ow\ de_ned as ]

d � g
lx:1

−lx:1

d?"x# dx "20#

where d?"x# is the distance from the upper channel wall
to the edge of the recirculation region[ The perturbation
approach used to obtain analytical solutions presupposes
that corrugation wavelengths are much larger than the
channel width[ The higher order terms which have been
neglected depend strongly on Reynolds number\ so that
as the size of the recirculation region grows\ the analytical
solutions becomes less accurate[ In contrast\ the numeri!
cal approach provides accurate solutions for small wave!
length channels\ but has di.culty in resolving small recir!
culation regions[ In the following discussion\ numerical
results will be reported only for cases where the secondary
~ow is well!developed[ Also\ the analytical solutions will
be used primarily to understand the qualitative nature of
the ~ow[

4[ Two!dimensional corrugations

For this case\ bz � a � 9 as shown in Fig[ 0"a#[ The
corrugations are independent of the z!coordinate and the
~ow is only in the x!direction[

4[0[ Pathlines

Particle paths for a long wavelength channel can be
obtained by integrating equation "7# where the vector
_eld V is given by equations "05#Ð"11#[ A _fth!order
RungaÐKutta scheme is used to perform the integration[
The resulting pathlines are shown in Fig[ 2 in the dimen!
sionless coordinate system[ The recirculation region near
the wall can clearly be seen[ There is a bounding stream!
line which separates the recirculation region from the
main channel ~ow which the ~uid does not cross[ There
is no advection of heat across this streamline\ only con!
duction[

4[1[ Pressure drop

Figure 3 shows the e}ect of Reynolds number on pres!
sure drop for ~at and corrugated channel walls[ The
addition of corrugations has a signi_cant e}ect at very
low Reynolds numbers\ increasing the pressure gradient
by about 14) for Re � 14[ However\ as Re increases the
pressure drop in a corrugated channel becomes indis!
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Fig[ 1[ Comparison of recirculation region size for "a# analytical and "b# numerical solutions with Re � 099\ b � 9[1\ and g � 9[

tinguishable from that for ~ow between ~at plates with
the same average separation distance and mass ~ow rate[
Because it becomes very small\ it is di.cult to make
precise comparisons of the pressure drop from the
numerical algorithm[

4[2[ Heat transfer

Figure 4 shows the distribution of local Nusselt num!
ber along the upper wall for _xed Reynolds number and
channel geometry[ For a very small Peclet number\ curve
"a#\ the e}ect of advection is negligible[ At x � −lx:1\
x � 9 and x � lx:1 the normal to the wall lies in the y!
direction\ so the Nusselt number at these locations is
simply

b
1T
1n b�

0
1s

[ "21#

In between these points the curve is distorted purely due
to the e}ects of wall corrugations on conduction heat
transfer[ As Peclet number increases\ the in~uence of the
hydrodynamics of separated ~ow become apparent[ For
high Pe there is a decrease in temperature gradient to the

left of the channel center where hot ~uid is pushed away
from the hot wall\ and an increase to the right where cold
~uid is pushed toward the hot wall[

Integrating the local Nusselt number over one wave!
length in the x!direction gives the area!averaged Nusselt
number[ For the curves shown in Fig[ 4\ "a#
ðNuŁ � 9[638\ "b# ðNuŁ � 9[778\ "c# ðNuŁ � 9[882\ and
"d# ðNuŁ � 0[091\ respectively[ The physical reasons for
this increase with Pe can be explained by comparing the
local Nusselt number with the magnitude of the velocity
near the upper wall[ The latter is represented by the
nearest grid point for which a numerical value\ Vw\ is
available ^ for convenience\ this velocity has been nor!
malized by its value at x � 9[ Figure 5 shows curve "d#
of Fig[ 4 along with Vw[ It can be seen that the velocity
is asymmetric about x � 9 and gives more weight to the
right stagnation point which produces a local enhance!
ment\ than to the left which causes a local inhibition[ The
result is a net increase in the area!averaged heat transfer
which grows as the advection becomes more important[

To con_rm that this asymmetry is in fact responsible
for heat transfer enhancement\ we can compare it with
an arti_cially!produced symmetric ~ow[ Consider the
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Fig[ 2[ Two!dimensional corrugations ] pathlines from perturbation solution ^ Re � 249\ bx � 9[1\ lx � 09[ Main ~ow from left to right[

numerically!obtained ~ow pattern shown in Fig[ 6[ We
can produce an arti_cial ~ow _eld usym\ vsym from

usym"x\ y# � 0
1
ðu"x\ y#¦u"−x\ y#Ł "22#

vsym"x\ y# � 0
1
ðv"x\ y#−v"−x\ y#Ł "23#

where u and v are the correct numerical results[ Figure 7
shows that the enhancement is much greater in the correct
asymmetric ~ow than in the arti_cial symmetric one\
especially as advection becomes more important[ The
mechanism for heat transfer enhancement in the cor!
rugated channel is therefore a combination of advection
near the stagnation points and the asymmetry of the
recirculating ~ow[

5[ Eggcarton corrugations

Here we have bz � 9 as shown in Fig[ 0"b#[ If a � 9 the
~ow is mainly in the x!direction ^ the three!dimensional
corrugations do introduce some three!dimensionality to
the ~ow though there is no mean ~ow in the z!direction[
As a increases the ~ow acquires a greater mean com!
ponent in the z!direction[

5[0[ Pathlines

Figure 8 shows the paths of particles in an eggcarton!
type channel with bx¦bz the same as in Fig[ 2[ The

pathlines are signi_cantly di}erent than that in the two!
dimensional corrugations\ even tough the values of bz

and a are small[ The three!dimensionality causes the
boundary of the recirculating region to be broken\ allow!
ing exchange of ~uid between it and the mid!channel
~ow[ The pathline shown by the broken line does several
loops within the recirculation region before leaving it[
The ~ow!visualization observations of Focke and Knibbe
ð07Ł have shown similar characteristics in which ~uid
is sucked into a vortex located within a furrow and is
eventually pumped out again[

Lyapunov exponents can be used to measure the rate
at which an in_nitesimal ~uid volume is stretched[ There
is a Lyapunov exponent associated with each dimension
of the ~ow\ and for a conservative\ incompressible system
the sum of these exponents must be zero[ For a non!
chaotic system\ in which stretching occurs at a linear rate\
all exponents must be zero[ For a system which exhibits
chaotic particle paths\ the largest Lyapunov exponent is
positive\ denoting exponential separation of neighboring
particles[ Note that the Lyapunov exponents are depen!
dent on initial location of the tracer particle[ Using the
algorithm of Wolf et al[ ð12Ł the Lyapunov exponents
associated with a certain location within the domain can
be found by tracing the path of a single particle with
initial conditions at that location[ With the velocity _eld
of equations "05#Ð"11# and a particle initially at
"x\ y\ z# �"9[9\ 9[14\ 9[9#\ we _nd a value of 2[729[14 for
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Fig[ 3[ Pressure drop in two!dimensional ~ow vs[ Re for g � 9\ lx � 0[9 and "a# b � 9[9\ "b# b � 9[0 and "c# b � 9[064[

parameters Re � 045\ bx � 9[014\ bz � 9[9644\ lx � 09:2\
a � 06[1>[ For a two!dimensional geometry in which
bx � 9[04\ and bz � 9\ the other parameters being the
same\ the value is 929[14[ This is further evidence that
the particle paths can be chaotic in the eggcarton
geometry[

5[1[ Heat transfer

The isotherms shown in Fig[ 09 for a eggcarton
geometry are seen to be a}ected by the presence of the
recirculating ~ow[ The corresponding Nusselt number
distribution is shown in Fig[ 00[ As the Peclet number
increases\ the peak!to!peak variation and asymmetry of
Nu about the channel center\ x � 9\ becomes more pro!
nounced in the eggcarton geometry\ as was also the case
in the corresponding two!dimensional corrugations[

It is interesting to analyze the variation of the Nusselt
number with the ~ow angle a as shown in Fig[ 01[ For
~ows with a very slight z!component\ there is an increase
in ðNuŁ:ðNu9Ł[ As a increases further\ there is a sudden
drop in the heat transfer\ then a gradual rise[ In order to

understand this behavior\ we must consider pathlines in
the eggcarton channel[ As described before\ heat transfer
enhancement in two!dimensional corrugations is due to
the presence of stagnation points and an asymmetry of
the ~ow[ It is limited\ however\ by conduction across the
bounding streamline which connects the two stagnation
points[ For the eggcarton geometry with a � 9\ the
hydrodynamics are essentially the same[ But\ as seen in
Fig[ 8\ even a small non!zero a results in pathlines which
cross between the recirculation region and the main ~ow\
producing an increase in convective heat transfer[ As long
as the overall ~ow structure does not vary signi_cantly
from that for a two!dimensional corrugated channel\ the
primary enhancement mechanism will still be due to the
recirculating ~ow\ but with an additional enhancement
due to advective transport across the boundary of the
recirculation region[ However\ as the transverse ~ow
becomes stronger\ the residence time of particles within
the recirculation region becomes shorter and the region
itself is destroyed ^ the heat transfer rate falls[ For a × 7>\
the ratio ðNuŁ:ðNu9Ł increases again indicating that the
amount of mixing within the main ~ow does provide
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Fig[ 4[ Two!dimensional corrugations ] local Nusselt number distribution from numerical solution ^ Re � 099\ bx � 9[04\ lx � 3:2 and
"a# Pe � 9[90\ "b# Pe � 09\ "c# Pe � 49\ "d# Pe � 099[

Fig[ 5[ Two!dimensional corrugations ] "a# magnitude of the near!wall velocity "normalized by its value at x � 9# and "b# average
Nusselt number from numerical solution ^ Re � 099\ bz � 9[04\ lx � 3:2\ and Pe � 099[
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Fig[ 6[ Two!dimensional corrugations ] streamlines from numerical solution ^ Re � 099\ bx � 9[04\ lx � 3:2[ Main ~ow from left to
right[

Fig[ 7[ Two!dimensional corrugations ] heat transfer enhancement from numerical solution in "a# arti_cial\ symmetric ~ow and "b#
correct\ asymmetric ~ow ^ Re � 099\ bx � 9[04\ lx � 3:2[
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Fig[ 8[ Eggcarton corrugations ] xÐy projection of pathlines from perturbation solution ^ Re � 249\ bx � 9[07\ bx � 9[91\ lx � 09\
lz � 099\ a � 4[6>[ Main ~ow from left to right[

Fig[ 09[ Eggcarton corrugations ] isotherms at z � 9 ^ Re � 030\ bx � 9[064\ bz � 9[914\ lx � lz � 0\ a � 34> and Pe � 099[
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Fig[ 00[ Eggcarton corrugations ] local Nusselt number distribution at z � 9 ^ Re � 030\ bx � 9[063\ bz � 9[914\ lx � lz � 0\ a � 34>
and "a# Pe � 9[90\ "b# Pe � 09\ "c# Pe � 49\ "d# Pe � 099[

Fig[ 01[ Eggcarton corrugations ] e}ect of ~ow alignment on heat transfer enhancement ^ bx � bz � 9[0\ lx � lz � 0\ Pe � 199 and "a#
Re � 030\ and "b# Re � 101[
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some enhancement\ but does not quite make up for the
loss of the recirculation region[

There are several di}erent ways in which the per!
formance of this geometry can be quantitatively com!
pared to that of the two!dimensional[ For example\ we
can have the total amplitude bx¦bz the same\ as shown
in Fig[ 02[ When advection is important\ i[e[ for large
Peclet numbers\ the two!dimensional geometry does bet!
ter ^ the enhancement is 03[7) at Pe � 199[ Or we can
compare the two geometries with the same surface area\
as in Fig[ 03[ Now the eggcarton is better\ the improve!
ment being 06[3) at Pe � 199 ^ the performance of both
become similar as we go to the other extreme of pure
conduction and Pe : 9[

6[ Conclusion

Local heat transfer enhancement in a channel with
two!dimensional corrugations compared to ~at plates is
due to the presence of recirculation[ At the upstream
stagnation point ~uid is pushed away from the heated
upper wall ^ near the downstream stagnation point cool
~uid is pushed toward the wall[ As a result\ the isotherms
are distorted\ creating a lower heat ~ux along the wall
near the upstream stagnation point\ and a higher heat

Fig[ 02[ Comparison of thermal performances with Re � 099 and same total amplitude of corrugations of "a# two!dimensional
corrugations with bx � 9[1\ lx � 0 and "b# eggcarton geometry with bx � 9[0\ bz � 9[0\ lx � 0\ lz � 0\ a � 34>[

~ux near the downstream stagnation point[ Area!average
heat transfer enhancement is due primarily to the asym!
metry of the recirculating ~ow with respect to the location
of the stagnation points[ If this asymmetry is removed
arti_cially\ the area!averaged Nusselt number decreases
signi_cantly[ Since the actual ~ow is skewed toward the
downstream stagnation point\ the heat transfer enhance!
ment in this region outweighs the inhibiting e}ect of the
~ow near the upstream stagnation point[ The convective
heat transfer depends on both temperature gradient and
velocity\ and the velocity normal to the wall is higher
near the downstream stagnation point than that near the
upstream stagnation point[

For slight three!dimensionality in the ~ow in a channel
with eggcarton geometry the bounding surface between
recirculating region and main ~ow becomes permeable[
Although the recirculation region is still present for weak
transverse ~ow rates\ the ~uid is able to move between
this region and the mid!channel ~ow[ This allows heat
transfer across what was a barrier to advection in the
two!dimensional corrugated channel[ The result is an
increase in the Nusselt number[ As the ~ow angle a is
increased further\ the residence time of particles within
the recirculation region is reduced[ This has the ultimate
e}ect of destroying the recirculation which is the primary
source of heat transfer enhancement in both corrugated
and eggcarton channels[
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Fig[ 03[ Comparison of thermal performances with Re � 099 and same surface area of "a# two!dimensional corrugations with bz � 9[032\
lx � 0 and "b# eggcarton geometry with bz � 9[0\ bz � 9[0\ lx � 0\ lz � 0\ a � 34>[

Acknowledgment

We thank Dr M[ C[ Sharatchandra for help with the
numerical method[

References

ð0Ł Chow JCF\ Soda K[ Laminar ~ow and blood oxygenation
in channels with boundary irregularities[ J Appl Mech
0862^39]732Ð8[

ð1Ł Sobey IJ[ On ~ow through furrowed channels\ Part 0\ cal!
culated ~ow patterns[ J Fluid Mech 0879^85]0Ð15[

ð2Ł Amano RS[ A numerical study of laminar and turbulent
heat transfer in a periodically corrugated wall channel[ J
Heat Transfer 0874^096]453Ð8[

ð3Ł Sunden B\ Trollheden S[ Periodic laminar ~ow and heat
transfer in a corrugated two!dimensional channel[ Int
Comm Heat Mass Transfer 0878^05]104Ð14[

ð4Ł Goldstein L\ Sparrow EM[ Heat:mass transfer charac!
teristics for ~ow in a corrugated wall channel[ J Heat Trans!
fer 0866^88]076Ð84[

ð5Ł Asako Y\ Faghri M[ Finite!volume solutions for laminar
~ow and heat transfer in a corrugated duct[ J Heat Transfer
0876^098]516Ð23[

ð6Ł Molki M\ Yuen CM[ E}ect of interwall spacing on heat
transfer and pressure drop in a corrugated!wall duct[ Int J
Heat Mass Transfer 0875^18]876Ð86[

ð7Ł Xin RC\ Tao WQ[ Numerical predictions of laminar ~ows
and heat transfer in wavy channels of uniform cross!sec!
tional areas[ Num Heat Transfer 0877^03]354Ð70[

ð8Ł Ali MM\ Ramadhyani S[ Experiments on convective heat
transfer in corrugated channels[ Experimental Heat Trans!
fer 0881^4]064Ð82[

ð09Ł Nishimura T\ Ohiri Y\ Kajimoto Y\ Kawamura Y[ Mass
transfer characteristics in a channel with symmetric wavy
wall for steady ~ow[ J Chem Engng Japan 0874^07]449Ð4[

ð00Ł Ghosh S\ Chang H!C\ Sen M[ Heat transfer enhancement
due to slender recirculation and chaotic transport between
counter!rotating eccentric cylinders[ J Fluid Mech
0881^127]008Ð43[

ð01Ł Acharya N\ Sen M\ Chang H!C[ Heat transfer enhance!
ment in coiled tubes by chaotic mixing[ Int J Heat Mass
Transfer 0881^24]1364Ð78[

ð02Ł Chang H!C\ Sen M[ Application of chaotic advection to
heat transfer[ Chaos\ Solitons and Fractals 0883^3]844Ð64[

ð03Ł Stasiek J\ Collins MW\ Ciofalo M\ Chew P[ Investigation
of ~ow and heat transfer in corrugated passages*I[ Exper!
imental results[ Int J Heat Mass Transfer 0885^28]038Ð53[

ð04Ł Ciofalo M\ Stasiek J\ Collins MW[ Investigation of ~ow
and heat transfer in corrugated passages*II[ Numerical
simulations[ Int J Heat Mass Transfer 0885^28]054Ð81[

ð05Ł Gaiser G\ Kottke V[ Flow phenomena and local heat and
mass transfer in corrugated passages[ Chem Eng Tech
0878^01]399Ð4[

ð06Ł Focke WW\ Zachariades J\ Oliver I[ The e}ect of the cor!
rugation inclination angle on the thermohydraulic per!
formance of plate heat exchangers[ Int J Heat Mass Trans!
fer 0874^17]0358Ð68[

ð07Ł Focke WW\ Knibbe PG[ Flow visualization in parallel!
plate ducts with corrugated walls[ J Fluid Mech
0875^054]62Ð6[

ð08Ł Sawyers DR[ Heat transfer enhancement by regular and



D[R[ Sawyers et al[:Int[ J[ Heat Transfer 30 "0887# 2448Ð2462 2462

chaotic mixing in laminar channel ~ow[ Ph[D[ dissertation\
Department of Aerospace and Mechanical Engineering\
Notre Dame\ IN 35445 ] University of Notre Dame\ 0886[

ð19Ł Eringen AC[ Nonlinear theory of continuous media[
McGraw!Hill\ 0851[

ð10Ł Patankar SV[ A calculation procedure for two!dimensional
elliptic situations[ Num Heat Trans 0870^3]398Ð14[

ð11Ł Sharatchandra MC\ Rhode DL[ New\ strongly con!
servative _nite!volume formulation for ~uid ~ows in irregu!
lar geometries using contravariant velocity components]
Part 0\ Theory[ Num Heat Trans B 0883^15]28Ð41[

ð12Ł Wolf A\ Swift JB\ Swinney HL\ Vastano JA[ Determining
Lyapunov exponents from a time series[ Physica D
0874^05]174Ð206[


